论文标题
部分可观测时空混沌系统的无模型预测
A4T: Hierarchical Affordance Detection for Transparent Objects Depth Reconstruction and Manipulation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Transparent objects are widely used in our daily lives and therefore robots need to be able to handle them. However, transparent objects suffer from light reflection and refraction, which makes it challenging to obtain the accurate depth maps required to perform handling tasks. In this paper, we propose a novel affordance-based framework for depth reconstruction and manipulation of transparent objects, named A4T. A hierarchical AffordanceNet is first used to detect the transparent objects and their associated affordances that encode the relative positions of an object's different parts. Then, given the predicted affordance map, a multi-step depth reconstruction method is used to progressively reconstruct the depth maps of transparent objects. Finally, the reconstructed depth maps are employed for the affordance-based manipulation of transparent objects. To evaluate our proposed method, we construct a real-world dataset TRANS-AFF with affordances and depth maps of transparent objects, which is the first of its kind. Extensive experiments show that our proposed methods can predict accurate affordance maps, and significantly improve the depth reconstruction of transparent objects compared to the state-of-the-art method, with the Root Mean Squared Error in meters significantly decreased from 0.097 to 0.042. Furthermore, we demonstrate the effectiveness of our proposed method with a series of robotic manipulation experiments on transparent objects. See supplementary video and results at https://sites.google.com/view/affordance4trans.