论文标题
部分可观测时空混沌系统的无模型预测
Parameterized Complexity of Streaming Diameter and Connectivity Problems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size $k$ allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is $O(\log n)$ for any fixed $k$. Underlying these algorithms is a method to execute a breadth-first search in $O(k)$ passes and $O(k \log n)$ bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where $Ω(n/p)$ bits of memory is needed for any $p$-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph $H$, for most $H$. For some cases, we can also show one-pass, $Ω(n \log n)$ bits of memory lower bounds. We also prove a much stronger $Ω(n^2/p)$ lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size $k$. This yields a kernel of $2k$ vertices (with $O(k^2)$ edges) produced as a stream in $\text{poly}(k)$ passes and only $O(k \log n)$ bits of memory.