论文标题
部分可观测时空混沌系统的无模型预测
LASSO Principal Component Averaging -- a fully automated approach for point forecast pooling
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper develops a novel, fully automated forecast averaging scheme, which combines LASSO estimation method with Principal Component Averaging (PCA). LASSO-PCA (LPCA) explores a pool of predictions based on a single model but calibrated to windows of different sizes. It uses information criteria to select tuning parameters and hence reduces the impact of researchers' at hock decisions. The method is applied to average predictions of hourly day-ahead electricity prices over 650 point forecasts obtained with various lengths of calibration windows. It is evaluated on four European and American markets with almost two and a half year of out-of-sample period and compared to other semi- and fully automated methods, such as simple mean, AW/WAW, LASSO and PCA. The results indicate that the LASSO averaging is very efficient in terms of forecast error reduction, whereas PCA method is robust to the selection of the specification parameter. LPCA inherits the advantages of both methods and outperforms other approaches in terms of MAE, remaining insensitive the the choice of a tuning parameter.