论文标题

部分可观测时空混沌系统的无模型预测

Learning Spatial and Temporal Variations for 4D Point Cloud Segmentation

论文作者

Hanyu, Shi, Jiacheng, Wei, Hao, Wang, Fayao, Liu, Guosheng, Lin

论文摘要

基于激光雷达的3D场景感知是自动驾驶的基本和重要任务。基于激光雷达的3D识别任务的大多数最新方法都集中在单帧3D点云数据上,并且这些方法在这些方法中被忽略。我们认为,整个框架的时间信息为3D场景感知提供了重要的知识,尤其是在驾驶场景中。在本文中,我们专注于空间和时间变化,以更好地探索3D帧的时间信息。我们设计了一个时间变化 - 意识到的插值模块和一个时间体素点炼油厂,以捕获4D点云中的时间变化。时间变化意识到的插值通过捕获空间连贯性和时间变化信息来生成从上一个和当前帧的局部特征。时间体素点炼油厂在3D点云序列上构建了时间图,并使用图形卷积模块捕获时间变化。时间体素点炼油厂还将粗素级预测转换为细胞级预测。借助我们提出的模块,新的网络TVSN在Semantickitti和Semantiposs上实现了最先进的性能。具体而言,我们的方法在MIOU中达到52.5 \%(以前的最佳方法+5.5%)在Semantickitti的多个扫描分段任务上,在Semanticposs上达到63.0%(以前的最佳方法+2.8%)。

LiDAR-based 3D scene perception is a fundamental and important task for autonomous driving. Most state-of-the-art methods on LiDAR-based 3D recognition tasks focus on single frame 3D point cloud data, and the temporal information is ignored in those methods. We argue that the temporal information across the frames provides crucial knowledge for 3D scene perceptions, especially in the driving scenario. In this paper, we focus on spatial and temporal variations to better explore the temporal information across the 3D frames. We design a temporal variation-aware interpolation module and a temporal voxel-point refiner to capture the temporal variation in the 4D point cloud. The temporal variation-aware interpolation generates local features from the previous and current frames by capturing spatial coherence and temporal variation information. The temporal voxel-point refiner builds a temporal graph on the 3D point cloud sequences and captures the temporal variation with a graph convolution module. The temporal voxel-point refiner also transforms the coarse voxel-level predictions into fine point-level predictions. With our proposed modules, the new network TVSN achieves state-of-the-art performance on SemanticKITTI and SemantiPOSS. Specifically, our method achieves 52.5\% in mIoU (+5.5% against previous best approaches) on the multiple scan segmentation task on SemanticKITTI, and 63.0% on SemanticPOSS (+2.8% against previous best approaches).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源