论文标题
域混淆了无监督域适应的对比度学习
Domain Confused Contrastive Learning for Unsupervised Domain Adaptation
论文作者
论文摘要
在这项工作中,我们以一种充满挑战的自学方法来研究无监督的域适应性(UDA)。困难之一是如何在没有目标标签的情况下学习任务歧视。与以前的文献直接使跨域分布或利用反向梯度保持一致,我们建议域混淆对比度学习(DCCL),以通过域难题桥接源和目标域,并在适应后保留歧视性表示。从技术上讲,DCCL搜索最大的攻击方向,而精美的手工艺领域将增强型混淆为正对,然后它反对地鼓励该模型向其他领域提取陈述,从而学习更稳定和有效的域名。我们还研究对比度学习在执行其他数据增强时是否必然有助于UDA。广泛的实验表明,DCCL的表现明显优于基准。
In this work, we study Unsupervised Domain Adaptation (UDA) in a challenging self-supervised approach. One of the difficulties is how to learn task discrimination in the absence of target labels. Unlike previous literature which directly aligns cross-domain distributions or leverages reverse gradient, we propose Domain Confused Contrastive Learning (DCCL) to bridge the source and the target domains via domain puzzles, and retain discriminative representations after adaptation. Technically, DCCL searches for a most domain-challenging direction and exquisitely crafts domain confused augmentations as positive pairs, then it contrastively encourages the model to pull representations towards the other domain, thus learning more stable and effective domain invariances. We also investigate whether contrastive learning necessarily helps with UDA when performing other data augmentations. Extensive experiments demonstrate that DCCL significantly outperforms baselines.