论文标题
多任务设想基于变压器的自动编码器,用于公司信用评级移民早期预测
Multi-task Envisioning Transformer-based Autoencoder for Corporate Credit Rating Migration Early Prediction
论文作者
论文摘要
第三方评级机构发布的公司信用评级是对公司信誉的量化评估。信贷评级与公司违约债务义务的可能性高度相关。这些评级在投资决策中起关键作用,这是关键风险因素之一。它们也是监管框架的核心,例如在计算金融机构必要的资本中,巴塞尔二世。能够预测评级变化将极大地使投资者和监管机构受益。在本文中,我们考虑了公司信用评级移民早期预测问题,该问题预测发行人的信用等级将根据当时的最新财务报告信息在12个月后升级,不变或降级。我们研究了不同标准的机器学习算法的有效性,并得出结论这些模型的性能较低。作为我们贡献的一部分,我们提出了一个新的多任务设想的基于变压器的自动编码器(META)模型,以解决这个具有挑战性的问题。 META由位置编码,基于变压器的自动编码器和多任务预测组成,以学习迁移预测和评级预测的有效表示。这使得元可以更好地探索一年后预测的培训阶段的历史数据。实验结果表明,元表现优于所有基线模型。
Corporate credit ratings issued by third-party rating agencies are quantified assessments of a company's creditworthiness. Credit Ratings highly correlate to the likelihood of a company defaulting on its debt obligations. These ratings play critical roles in investment decision-making as one of the key risk factors. They are also central to the regulatory framework such as BASEL II in calculating necessary capital for financial institutions. Being able to predict rating changes will greatly benefit both investors and regulators alike. In this paper, we consider the corporate credit rating migration early prediction problem, which predicts the credit rating of an issuer will be upgraded, unchanged, or downgraded after 12 months based on its latest financial reporting information at the time. We investigate the effectiveness of different standard machine learning algorithms and conclude these models deliver inferior performance. As part of our contribution, we propose a new Multi-task Envisioning Transformer-based Autoencoder (META) model to tackle this challenging problem. META consists of Positional Encoding, Transformer-based Autoencoder, and Multi-task Prediction to learn effective representations for both migration prediction and rating prediction. This enables META to better explore the historical data in the training stage for one-year later prediction. Experimental results show that META outperforms all baseline models.