论文标题

KPZ固定点的迭代对数的长时间和短期定律

Long and short time laws of iterated logarithms for the KPZ fixed point

论文作者

Das, Sayan, Ghosal, Promit, Lin, Yier

论文摘要

我们考虑从一般初始数据开始的KPZ固定点。在本文中,我们研究了KPZ固定点的大峰值的增长,即时间$ t $变为$ \ infty $,而当$ t $接近$ 1 $时,我们就以空间点的$ 0 $ 0 $ 0 $ 0。我们证明,对于非常广泛的初始数据类别,作为$ t \ to \ infty $,当用$ t^{1/3}(\ log \ log \ log \ log t)^{2/3}^缩放时,kpz固定点高度功能的limsup几乎肯定平等一个常数。常数的值为$(3/4)^{2/3} $或$(3/2)^{2/3} $,具体取决于初始数据分别为非兰德或布朗尼人。此外,我们表明KPZ固定点接近$ t = 1 $的增量允许迭代对数的短期定律。更准确地说,随着时间的增加$ΔT:= t-1 $降至$ 0 $,对于包括Brownian数据初始数据在内的大量初始数据,我们表明,高度的Limsup会增加KPZ固定点$ 1 $ $ 1 $,当时$(ΔT)^{1/3}^{1/3}(1/3}(1/3}) $(3/2)^{2/3} $。

We consider the KPZ fixed point starting from a general class of initial data. In this article, we study the growth of the large peaks of the KPZ fixed point at a spatial point $0$ when time $t$ goes to $\infty$ and when $t$ approaches $1$. We prove that for a very broad class of initial data, as $t\to \infty$, the limsup of the KPZ fixed point height function when scaled by $t^{1/3}(\log\log t)^{2/3}$ almost surely equals a constant. The value of the constant is $(3/4)^{2/3}$ or $(3/2)^{2/3}$ depending on the initial data being non-random or Brownian respectively. Furthermore, we show that the increments of the KPZ fixed point near $t=1$ admits a short time law of iterated logarithm. More precisely, as the time increments $Δt :=t-1$ goes down to $0$, for a large class of initial data including the Brownian data initial data, we show that limsup of the height increments the KPZ fixed point near time $1$ when scaled by $(Δt)^{1/3}(\log\log (Δt)^{-1})^{2/3}$ almost surely equals $(3/2)^{2/3}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源