论文标题
供应链游戏中的在线学习
Online Learning in Supply-Chain Games
论文作者
论文摘要
我们研究供应商和零售商之间的重复游戏,他们希望在不了解问题参数的情况下最大化各自的利润。在用完整的信息表征了舞台游戏的Stackelberg平衡的独特性之后,我们表明,即使有部分了解需求和生产成本的共同分配,自然学习动态也可以保证供应商和零售商的共同策略概况融合到舞台游戏的Stackelberg均衡。我们还证明了供应商对零售商的遗憾的遗憾和渐近范围的有限时间界限,在该零售商的遗憾中,特定费率取决于玩家初步可用的知识类型。在特殊情况下,当供应商不是战略性的(垂直整合)时,我们证明,当成本和需求是在对抗性和需求时,零售商的遗憾(或等同于社会福利)对零售商的遗憾(或等效地是社会福利)的最佳范围进行了审查。
We study a repeated game between a supplier and a retailer who want to maximize their respective profits without full knowledge of the problem parameters. After characterizing the uniqueness of the Stackelberg equilibrium of the stage game with complete information, we show that even with partial knowledge of the joint distribution of demand and production costs, natural learning dynamics guarantee convergence of the joint strategy profile of supplier and retailer to the Stackelberg equilibrium of the stage game. We also prove finite-time bounds on the supplier's regret and asymptotic bounds on the retailer's regret, where the specific rates depend on the type of knowledge preliminarily available to the players. In the special case when the supplier is not strategic (vertical integration), we prove optimal finite-time regret bounds on the retailer's regret (or, equivalently, the social welfare) when costs and demand are adversarially generated and the demand is censored.