论文标题

由于太阳系混乱

Reduced variations in Earth's and Mars' orbital inclination and Earth's obliquity from 58 to 48 Myr ago due to solar system chaos

论文作者

Zeebe, Richard E.

论文摘要

太阳系的动态演变是混乱的,而内行星的Lyapunov时间仅为$ \ sim $ 5 MYR。由于混乱,基于当前的天文观测,从根本上不可能准确地预测太阳系的轨道演变超过$ \ sim $ 50 MYR。最近,我们开发了一种通过使用地质记录来限制天文解决方案来克服问题的方法。我们由此产生的最佳天文解决方案(称为ZB18A)与地质记录达到了杰出的一致性,达到$ \ sim $ 58 MA(MYR AGO),并且在50 mA左右的特征共振转变。在这里,我们表明,基于ZB18A的ZB18A以及地球和火星的旋转矢量的整合减少了地球和火星的轨道倾斜度的变化以及地球的倾斜(轴向倾斜)从$ \ sim $ \ sim $ 58 $ \ sim $ \ sim $ 48 ma-后面与古气候记录保持一致。倾斜的变化对地球和火星的气候历史具有重要意义。我们提供了太阳系频率($ g $和$ s $ modes)的详细分析,并表明地球和火星的轨道倾斜度和倾斜度的变化在48 MA上的变化与共振过渡有关,并且与$ s $ -s $ - $ $ $ $ $ - $ $ s $ s $ s ninter的贡献的变化有关。 $ g $ - $ s $ mmode的交互作用和共振转变(与地质数据一致)是混乱的明确表现。因此,太阳系中的动力混乱不仅会影响其轨道性质,而且会影响行星气候通过偏心的长期演变以及倾斜度与轴向倾斜之间的联系。

The dynamical evolution of the solar system is chaotic with a Lyapunov time of only $\sim$5 Myr for the inner planets. Due to the chaos it is fundamentally impossible to accurately predict the solar system's orbital evolution beyond $\sim$50 Myr based on present astronomical observations. We have recently developed a method to overcome the problem by using the geologic record to constrain astronomical solutions in the past. Our resulting optimal astronomical solution (called ZB18a) shows exceptional agreement with the geologic record to $\sim$58 Ma (Myr ago) and a characteristic resonance transition around 50 Ma. Here we show that ZB18a and integration of Earth's and Mars' spin vector based on ZB18a yield reduced variations in Earth's and Mars' orbital inclination and Earth's obliquity (axial tilt) from $\sim$58 to $\sim$48 Ma -- the latter being consistent with paleoclimate records. The changes in the obliquities have important implications for the climate histories of Earth and Mars. We provide a detailed analysis of solar system frequencies ($g$- and $s$-modes) and show that the shifts in the variation in Earth's and Mars' orbital inclination and obliquity around 48 Ma are associated with the resonance transition and caused by changes in the contributions to the superposition of $s$-modes, plus $g$-$s$-mode interactions in the inner solar system. The $g$-$s$-mode interactions and the resonance transition (consistent with geologic data) are unequivocal manifestations of chaos. Dynamical chaos in the solar system hence not only affects its orbital properties, but also the long-term evolution of planetary climate through eccentricity and the link between inclination and axial tilt.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源