论文标题

Larmor时钟的自旋波动的隧道时间

Tunneling time from spin fluctuations in Larmor clock

论文作者

Demir, Durmus

论文摘要

可以通过持续时间标记来测量量子粒子在势能屏障中隧道所需的时间,所需的时间。一个这样的标记是由于Larmor推力而引起的旋转重新定位。在$ z $方向上的磁场弱,Larmor时钟读了两次,$τ_y$和$τ_z$,用于沿$ y $ axis的势能屏障。问题是确定实际的隧道时间(ATT)。 b {ü} ttiker定义$ \ sqrt {τ_y^2 +τ_z^2} $作为att。另一方面,Steinberg等人与ATT一起识别$τ_y$。 B {ü} Ttiker和Steinberg Times基于平均旋转成分,但在一个组件的非交换旋转系统中,需要其他两个组件才能波动。在目前的工作中,我们研究了自旋波动的效果,并表明ATT可能是$τ_y + \ frac {τ_z^2} {τ_y} $。我们分析了ATT候选人,并揭示了基于波动的ATT充当所有低级式,高级式,厚,牢固级式和经典动力学限制的传输时间。我们使用Steinberg Group的最新实验数据提取这种新的ATT。新的ATT符合可行的隧道时间公式。

Tunneling time, time needed for a quantum particle to tunnel through a potential energy barrier, can be measured by a duration marker. One such marker is spin reorientation due to Larmor precession. With a weak magnetic field in $z$ direction, the Larmor clock reads two times, $τ_y$ and $τ_z$, for a potential energy barrier along the $y$ axis. The problem is to determine the actual tunneling time (ATT). B{ü}ttiker defines $\sqrt{τ_y^2 + τ_z^2}$ to be the ATT. Steinberg and others, on the other hand, identify $τ_y$ with the ATT. The B{ü}ttiker and Steinberg times are based on average spin components but in non-commuting spin system average of one component requires the other two to fluctuate. In the present work, we study the effects of spin fluctuations and show that the ATT can well be $τ_y + \frac{τ_z^2}{τ_y}$. We analyze the ATT candidates and reveal that the fluctuation-based ATT acts as a transmission time in all of the low-barrier, high-barrier, thick-barrier and classical dynamics limits. We extract this new ATT using the most recent experimental data by the Steinberg group. The new ATT qualifies as a viable tunneling time formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源