论文标题
通过社会知识的神经网络预测意见动态
Predicting Opinion Dynamics via Sociologically-Informed Neural Networks
论文作者
论文摘要
舆论形成和传播是社交网络中的关键现象,并且已经在几个学科中进行了广泛的研究。传统上,已经提出了意见动力学的理论模型来描述个人之间的互动(即社会互动)及其对集体意见发展的影响。尽管这些模型可以将社会互动机制的社会学和心理学知识纳入,但它们要求使用真实数据进行广泛的校准,以做出可靠的预测,需要大量的时间和精力。最近,社交媒体平台的广泛使用提供了新的范式,可以从大量社交媒体数据中学习深度学习模型。但是,这些方法忽略了有关社会互动机制的任何科学知识。在这项工作中,我们提出了一种称为社会知识神经网络(SINN)的第一种混合方法,该方法通过将物理知识神经网络(PINN)的概念从自然科学(即物理学)运输到社会科学(即社会学和社会心理学)中来整合理论模型和社交媒体数据。特别是,我们将理论模型作为普通微分方程(ODE)重新铸造。然后,我们训练一个神经网络,该神经网络同时近似数据并符合代表社会科学知识的ODE。此外,我们通过集成矩阵分解和语言模型来扩展PINN,以结合丰富的侧面信息(例如,用户配置文件)和结构知识(例如,社交交互网络的群集结构)。此外,我们为SINN制定了端到端的培训程序,其中涉及Gumbel-Softmax近似,以包括社交互动的随机机制。关于现实世界和合成数据集的广泛实验表明,在预测意见动态方面,SINN优于六种基线方法。
Opinion formation and propagation are crucial phenomena in social networks and have been extensively studied across several disciplines. Traditionally, theoretical models of opinion dynamics have been proposed to describe the interactions between individuals (i.e., social interaction) and their impact on the evolution of collective opinions. Although these models can incorporate sociological and psychological knowledge on the mechanisms of social interaction, they demand extensive calibration with real data to make reliable predictions, requiring much time and effort. Recently, the widespread use of social media platforms provides new paradigms to learn deep learning models from a large volume of social media data. However, these methods ignore any scientific knowledge about the mechanism of social interaction. In this work, we present the first hybrid method called Sociologically-Informed Neural Network (SINN), which integrates theoretical models and social media data by transporting the concepts of physics-informed neural networks (PINNs) from natural science (i.e., physics) into social science (i.e., sociology and social psychology). In particular, we recast theoretical models as ordinary differential equations (ODEs). Then we train a neural network that simultaneously approximates the data and conforms to the ODEs that represent the social scientific knowledge. In addition, we extend PINNs by integrating matrix factorization and a language model to incorporate rich side information (e.g., user profiles) and structural knowledge (e.g., cluster structure of the social interaction network). Moreover, we develop an end-to-end training procedure for SINN, which involves Gumbel-Softmax approximation to include stochastic mechanisms of social interaction. Extensive experiments on real-world and synthetic datasets show SINN outperforms six baseline methods in predicting opinion dynamics.