论文标题

黑色和灰色框学习振幅方程:应用到相位系统系统

Black and Gray Box Learning of Amplitude Equations: Application to Phase Field Systems

论文作者

Kemeth, Felix P., Alonso, Sergio, Echebarria, Blas, Moldenhawer, Ted, Beta, Carsten, Kevrekidis, Ioannis G.

论文摘要

我们提出了一种数据驱动的方法,用于学习振幅方程的替代模型,并说明了其在相位场系统的界面动力学上的应用。特别是,我们证明了学习有效的部分微分方程,描述了相位场界面从全相位数据中的演变。我们在模型相位字段系统上进行了说明,其中分析近似方程(较高阶的eikonal方程及其近似值)已知Kardar-Parisi-Zhang(KPZ)方程)。对于此系统,我们讨论了数据驱动的方法,以识别准确描述前接口动力学的方程式。当上面提到的分析近似模型变得不准确时,随着我们超越基本假设的有效性区域,数据驱动的方程式的表现都优于它们。在这些制度中,超越了黑盒标识,我们探索了对分析近似模型学习数据驱动校正的不同方法,从而导致有效的灰色盒子部分微分方程。

We present a data-driven approach to learning surrogate models for amplitude equations, and illustrate its application to interfacial dynamics of phase field systems. In particular, we demonstrate learning effective partial differential equations describing the evolution of phase field interfaces from full phase field data. We illustrate this on a model phase field system, where analytical approximate equations for the dynamics of the phase field interface (a higher order eikonal equation and its approximation, the Kardar-Parisi-Zhang (KPZ) equation) are known. For this system, we discuss data-driven approaches for the identification of equations that accurately describe the front interface dynamics. When the analytical approximate models mentioned above become inaccurate, as we move beyond the region of validity of the underlying assumptions, the data-driven equations outperform them. In these regimes, going beyond black-box identification, we explore different approaches to learn data-driven corrections to the analytically approximate models, leading to effective gray box partial differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源