论文标题

用于动态晶格几何控制的多频光学晶格

Multi-frequency optical lattice for dynamic lattice-geometry control

论文作者

Kosch, Marcel N., Asteria, Luca, Zahn, Henrik P., Sengstock, Klaus, Weitenberg, Christof

论文摘要

光学晶格中的超电原子是具有可调性和柔韧性的原始模型系统,它超出了固态类比,例如动态格子几何变化,可以将石墨烯晶格调整为硼氮化物晶格。但是,晶格几何形状的快速调节在本质上仍然很困难。在这里,我们介绍了一个多频晶格,用于快速,柔性的晶格几何控制,并为三个光束晶格演示,并实现了蜂窝晶格,硼氮晶格和三角形晶格之间的全部动力可调性。同时,该方案确保了晶格几何的本质上高稳定性。我们将几何阶段的概念介绍为完全控制几何形状并在动量空间晶格中视为交错通量的参数。调整几何阶段可以动态控制硼氮化物晶格中的sublattice偏移。我们使用偏移量的快速扫描将原子转移到更高的Bloch带中,并通过调节Sublattice偏移来执行新型的Bloch带光谱。最后,我们将几何阶段概念和多频晶格概括为三维光学晶格和准周期电位。该方案将允许更多的应用程序(例如新型的浮雕和淬火协议)创建和探测拓扑特性。

Ultracold atoms in optical lattices are pristine model systems with a tunability and flexibility that goes beyond solid-state analogies, e.g., dynamical lattice-geometry changes allow tuning a graphene lattice into a boron-nitride lattice. However, a fast modulation of the lattice geometry remains intrinsically difficult. Here we introduce a multi-frequency lattice for fast and flexible lattice-geometry control and demonstrate it for a three-beam lattice, realizing the full dynamical tunability between honeycomb lattice, boron-nitride lattice and triangular lattice. At the same time, the scheme ensures intrinsically high stability of the lattice geometry. We introduce the concept of a geometry phase as the parameter that fully controls the geometry and observe its signature as a staggered flux in a momentum space lattice. Tuning the geometry phase allows to dynamically control the sublattice offset in the boron-nitride lattice. We use a fast sweep of the offset to transfer atoms into higher Bloch bands, and perform a new type of Bloch band spectroscopy by modulating the sublattice offset. Finally, we generalize the geometry phase concept and the multi-frequency lattice to three-dimensional optical lattices and quasi-periodic potentials. This scheme will allow further applications such as novel Floquet and quench protocols to create and probe, e.g., topological properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源