论文标题
半监督的标准化对极性行星的标准化检测
Semi-supervised standardized detection of extrasolar planets
论文作者
论文摘要
用径向速度(RV)技术检测小型系外行星受到各种众所周知的仪器和恒星起源的噪声来源的限制。结果,当前的检测技术通常无法提供可靠的检测测试显着性水平(P值)。我们设计了一个RV检测程序,该过程在考虑各种噪声源时提供可靠的P值估计值。该方法可以包含有关噪声(例如恒星活动指标)和特定数据或上下文驱动数据(例如,仪器测量,恒星变异性模拟)的辅助信息。该过程的检测部分使用应用于标准化期刊图的检测测试。标准化允许具有部分未知统计的噪声源进行自动校准。测试输出的p值的估计是基于专用的蒙特卡洛模拟,允许处理未知参数。从用户选择特定对(周期图和测试)的意义上说,该过程是多功能的。我们通过对来自太阳和ACENB的合成和实际RV数据进行的广泛数值实验证明,该方法可靠地估算了P值。该方法还提供了一种评估估计的p值依赖性的方法,该估计的p值归因于对建模误差的检测。它是RV行星在低信噪比下检测的关键点,以评估这种依赖性。 Python算法可在GitHub上找到。当涉及未知参数时,P值的准确估计是一个重要的,但直到最近才解决RV检测领域的问题。尽管这项工作提出了一种方法,但本文讨论的统计文献可能会引发其他策略的发展。
The detection of small exoplanets with the radial velocity (RV) technique is limited by various poorly known noise sources of instrumental and stellar origin. As a consequence, current detection techniques often fail to provide reliable estimates of the significance levels of detection tests (p-values). We designed an RV detection procedure that provides reliable p-value estimates while accounting for the various noise sources. The method can incorporate ancillary information about the noise (e.g., stellar activity indicators) and specific data- or context-driven data (e.g., instrumental measurements, simulations of stellar variability) . The detection part of the procedure uses a detection test that is applied to a standardized periodogram. Standardization allows an autocalibration of the noise sources with partially unknown statistics. The estimation of the p-value of the test output is based on dedicated Monte Carlo simulations that allow handling unknown parameters. The procedure is versatile in the sense that the specific pair (periodogram and test) is chosen by the user. We demonstrate by extensive numerical experiments on synthetic and real RV data from the Sun and aCenB that the proposed method reliably allows estimating the p-values. The method also provides a way to evaluate the dependence of the estimated p-values that are attributed to a reported detection on modeling errors. It is a critical point for RV planet detection at low signal-to-noise ratio to evaluate this dependence. The python algorithms are available on GitHub. Accurate estimation of p-values when unknown parameters are involved is an important but only recently addressed question in the field of RV detection. Although this work presents a method to do this, the statistical literature discussed in this paper may trigger the development of other strategies.