论文标题
因果关系:使用因果关系进行运动预测的鲁棒性基准
CausalAgents: A Robustness Benchmark for Motion Forecasting using Causal Relationships
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
As machine learning models become increasingly prevalent in motion forecasting for autonomous vehicles (AVs), it is critical to ensure that model predictions are safe and reliable. However, exhaustively collecting and labeling the data necessary to fully test the long tail of rare and challenging scenarios is difficult and expensive. In this work, we construct a new benchmark for evaluating and improving model robustness by applying perturbations to existing data. Specifically, we conduct an extensive labeling effort to identify causal agents, or agents whose presence influences human drivers' behavior in any format, in the Waymo Open Motion Dataset (WOMD), and we use these labels to perturb the data by deleting non-causal agents from the scene. We evaluate a diverse set of state-of-the-art deep-learning model architectures on our proposed benchmark and find that all models exhibit large shifts under even non-causal perturbation: we observe a 25-38% relative change in minADE as compared to the original. We also investigate techniques to improve model robustness, including increasing the training dataset size and using targeted data augmentations that randomly drop non-causal agents throughout training. Finally, we release the causal agent labels (at https://github.com/google-research/causal-agents) as an additional attribute to WOMD and the robustness benchmarks to aid the community in building more reliable and safe deep-learning models for motion forecasting.