论文标题
部分可观测时空混沌系统的无模型预测
A Study on the Predictability of Sample Learning Consistency
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Curriculum Learning is a powerful training method that allows for faster and better training in some settings. This method, however, requires having a notion of which examples are difficult and which are easy, which is not always trivial to provide. A recent metric called C-Score acts as a proxy for example difficulty by relating it to learning consistency. Unfortunately, this method is quite compute intensive which limits its applicability for alternative datasets. In this work, we train models through different methods to predict C-Score for CIFAR-100 and CIFAR-10. We find, however, that these models generalize poorly both within the same distribution as well as out of distribution. This suggests that C-Score is not defined by the individual characteristics of each sample but rather by other factors. We hypothesize that a sample's relation to its neighbours, in particular, how many of them share the same labels, can help in explaining C-Scores. We plan to explore this in future work.