论文标题

量子近似优化算法性能,纠缠低和高电路深度

The Quantum Approximate Optimization Algorithm performance with low entanglement and high circuit depth

论文作者

Sreedhar, Rishi, Vikstål, Pontus, Svensson, Marika, Ask, Andreas, Johansson, Göran, García-Álvarez, Laura

论文摘要

变异量子算法构成了使用当前嘈杂量子计算机的最广泛的方法之一。但是,尽管我们无法以中间大小进行经典的模拟,但这些启发式算法是否提供任何量子计算加速,尚不清楚。由于纠缠是量子计算能力的核心,因此我们研究了其在这些启发式方法中解决优化问题的作用。特别是,我们使用矩阵乘积状态模拟量子近似优化算法,其债券尺寸$ d $,这是一个界限系统纠缠的参数。此外,我们通过确定性采样解决方案进一步限制了模拟。我们得出的结论是,自模拟算法分析以来,纠缠在MaxCut和精确覆盖的3个问题中起较小的作用,最高$ 60 $ QUBITS和$ P = 100 $算法层,表明它为债券尺寸$ d \ d \ d \ d \ depth $ p \ p \ of 30 $大约提供了解决方案。此外,我们在近似算法模拟中研究了经典优化循环,其$ 12 $ QUBITS和最高$ P = 4 $的深度,并表明具有低纠缠方法的近似最佳参数。

Variational quantum algorithms constitute one of the most widespread methods for using current noisy quantum computers. However, it is unknown if these heuristic algorithms provide any quantum-computational speedup, although we cannot simulate them classically for intermediate sizes. Since entanglement lies at the core of quantum computing power, we investigate its role in these heuristic methods for solving optimization problems. In particular, we use matrix product states to simulate the quantum approximate optimization algorithm with reduced bond dimensions $D$, a parameter bounding the system entanglement. Moreover, we restrict the simulation further by deterministically sampling solutions. We conclude that entanglement plays a minor role in the MaxCut and Exact Cover 3 problems studied here since the simulated algorithm analysis, with up to $60$ qubits and $p=100$ algorithm layers, shows that it provides solutions for bond dimension $D \approx 10$ and depth $p \approx 30$. Additionally, we study the classical optimization loop in the approximated algorithm simulation with $12$ qubits and depth up to $p=4$ and show that the approximated optimal parameters with low entanglement approach the exact ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源