论文标题
Eisenstein的GL(N)和Rankin-Selberg L功能的特殊值
Eisenstein Cohomology for GL(N) and the special values of Rankin-Selberg L-functions over a totally imaginary number field
论文作者
论文摘要
通过研究完全虚场F的GL(N)X GL(N)X GL(N)X GL(n)X GL(N)的临界值的比率证明了合理性结果,通过研究GL(n)/F组的rank-One Eisenstein共同体,其中N = N+N',其中N = n+N',将先前与guenter of Guenter of Guenter Hard Baseer的方法完全合理化为实际上是实际的基础。与完全真实的情况相反,完全虚构的基础场的内部结构对理性结果具有微妙的影响。
Rationality results are proved for the ratios of critical values of Rankin-Selberg L-functions of GL(n) x GL(n') over a totally imaginary field F, by studying rank-one Eisenstein cohomology for the group GL(N)/F, where N = n+n', generalizing the methods and results of previous work with Guenter Harder where the base field was totally real. In contrast to the totally real situation, the internal structure of the totally imaginary base field has a delicate effect on the rationality results.