论文标题

使用傅立叶神经操作员学习数字复合材料中的应力应变场

Learning the Stress-Strain Fields in Digital Composites using Fourier Neural Operator

论文作者

Rashid, Meer Mehran, Pittie, Tanu, Chakraborty, Souvik, Krishnan, N. M. Anoop

论文摘要

对高性能材料的需求增加导致具有复杂层次设计的高级复合材料。但是,由于无数的设计组合和基于物理的求解器的无数设计组合和过度的计算成本,设计具有目标属性和性能的量身定制的材料微观结构非常具有挑战性。在这项研究中,我们采用了基于神经操作的框架,即傅立叶神经操作员(FNO)来学习2D复合材料的机械响应。我们表明,FNO对具有很少的训练数据的几何复合复合微观结构的完整应力和应变张量场表现出高保真预测,并且纯粹基于微观结构。该模型还以高精度表现出对看不见的任意几何形状的零拍概括。此外,该模型通过直接从低分辨率输入构型预测高分辨率应力和应变场来表现出零拍的超分辨率功能。最后,该模型还为应力 - 应变场的等效度量提供了高临界性预测,从而使结果实现了升级。

Increased demands for high-performance materials have led to advanced composite materials with complex hierarchical designs. However, designing a tailored material microstructure with targeted properties and performance is extremely challenging due to the innumerable design combinations and prohibitive computational costs for physics-based solvers. In this study, we employ a neural operator-based framework, namely Fourier neural operator (FNO) to learn the mechanical response of 2D composites. We show that the FNO exhibits high-fidelity predictions of the complete stress and strain tensor fields for geometrically complex composite microstructures with very few training data and purely based on the microstructure. The model also exhibits zero-shot generalization on unseen arbitrary geometries with high accuracy. Furthermore, the model exhibits zero-shot super-resolution capabilities by predicting high-resolution stress and strain fields directly from low-resolution input configurations. Finally, the model also provides high-accuracy predictions of equivalent measures for stress-strain fields allowing realistic upscaling of the results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源