论文标题
Bañados-Silk-West效应,静态黑洞附近具有不可移动的颗粒,其旋转对应物
The Bañados-Silk-West effect with immovable particles near static black holes and its rotational counterpart
论文作者
论文摘要
BSW效应意味着能量$ e_ {c.m。} $在两个粒子的质量框架中心碰撞,在黑洞附近碰撞。通常,假定颗粒沿着测量学或电地球化学移动。相反,我们考虑了此效果的另一个版本。一个粒子位于静止的静态,一般来说,黑洞扭曲了。如果另一个粒子(例如,来自Infinity)与之发生碰撞,则碰撞$ e_ {c.m。} $的能量在质量框架中心生长无限(BSW效应)。将这种粒子保持在黑洞附近的力所需的力在非XTremal范围内发散,但对于极端粒子而言仍然有限非零,并且在超高黑洞的地平线上消失了。对旋转情况的概括意味着粒子与黑洞凝结,但没有径向速度。这样,提供了$ e \ rightarrow 0 $,提供了角动量$ l = 0 $。该条件取代了BSW效应的标准版本中微调参数的条件。
The BSW effect implies that the energy $E_{c.m.}$ in the center of mass frame of two particles colliding near a black hole can become unbounded. Usually, it is assumed that particles move along geodesics or electrogeodesics. Instead, we consider another version of this effect. One particle is situated at rest near a static, generally speaking, distorted black hole. If another particle (say, coming from infinity) collides with it, the energy of collision $E_{c.m.}$ in the center of mass frame grows unbounded (the BSW effect). The force required to keep such a particle near a black hole diverges for nonextremal horizons but remains finite nonzero for extremal one and vanishes in the horizon limit for ultraextremal black holes. Generalization to the rotating case implies that a particle corotates with a black hole but does not have a radial velocity. In doing so, the energy $E\rightarrow 0$, provided the angular momentum $L=0$. This condition replaces that of fine-tuning parameters in the standard version of the BSW effect.