论文标题

UIILD:统一的可解释的智能学习诊断框架,用于智能辅导系统

UIILD: A Unified Interpretable Intelligent Learning Diagnosis Framework for Intelligent Tutoring Systems

论文作者

Wang, Zhifeng, Yan, Wenxing, Zeng, Chunyan, Dong, Shi

论文摘要

智能学习诊断是智能辅导系统的关键引擎,旨在估算学习者当前的知识掌握状态并预测其未来学习绩效。传统学习诊断方法的重大挑战是无法平衡诊断准确性和解释性。尽管现有的基于心理测量学的学习诊断方法通过认知参数提供了一些领域的解释,但它们的建模能力不足,用于大规模学习数据。尽管基于深度学习的学习诊断方法提高了学习绩效预测的准确性,但它们固有的黑盒属性导致缺乏解释性,这使得他们对教育应用的不可信任的结果。为了解决上述问题,拟议的统一可解释的智能学习诊断(UIILD)框架从深度学习的强大表示能力和精神计量学的可解释性中受益,可以在学习预测的更好的表现中,并从三个方面提供解释性:认知参数,学习者 - 资源 - 资源 - 资源响应响应网络和自我意见机构的权力。在拟议的框架内,本文提出了两通道学习诊断机制LDM-ID以及三通道学习诊断机制LDM-HMI。与最先进的模型相比,在两个现实世界数据集和模拟数据集上进行的实验表明,我们的方法在预测学习者的表现方面具有更高的准确性,并且可以为诸如精确学习资源建议和个性化学习的应用程序提供有价值的教育解释性。

Intelligent learning diagnosis is a critical engine of intelligent tutoring systems, which aims to estimate learners' current knowledge mastery status and predict their future learning performance. The significant challenge with traditional learning diagnosis methods is the inability to balance diagnostic accuracy and interpretability. Although the existing psychometric-based learning diagnosis methods provide some domain interpretation through cognitive parameters, they have insufficient modeling capability with a shallow structure for large-scale learning data. While the deep learning-based learning diagnosis methods have improved the accuracy of learning performance prediction, their inherent black-box properties lead to a lack of interpretability, making their results untrustworthy for educational applications. To settle the above problem, the proposed unified interpretable intelligent learning diagnosis (UIILD) framework, which benefits from the powerful representation learning ability of deep learning and the interpretability of psychometrics, achieves a better performance of learning prediction and provides interpretability from three aspects: cognitive parameters, learner-resource response network, and weights of self-attention mechanism. Within the proposed framework, this paper presents a two-channel learning diagnosis mechanism LDM-ID as well as a three-channel learning diagnosis mechanism LDM-HMI. Experiments on two real-world datasets and a simulation dataset show that our method has higher accuracy in predicting learners' performances compared with the state-of-the-art models, and can provide valuable educational interpretability for applications such as precise learning resource recommendation and personalized learning tutoring in intelligent tutoring systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源