论文标题

DRL-ISP:具有深度加固学习的多目标相机ISP

DRL-ISP: Multi-Objective Camera ISP with Deep Reinforcement Learning

论文作者

Shin, Ukcheol, Lee, Kyunghyun, Kweon, In So

论文摘要

在本文中,我们提出了一个多目标相机ISP框架,该框架利用深入增强学习(DRL)和ISP工具箱,该工具箱由基于网络和常规的ISP工具组成。提出的基于DRL的相机ISP框架迭代从工具箱中选择了一个合适的工具,并将其应用于图像以最大化给定的特定于任务特定的奖励功能。为此,我们总共实施了51个ISP工具,包括曝光校正,颜色和色调校正,白平衡,锐化,脱氧和其他工具。我们还提出了一个有效的DRL网络体系结构,该体系结构可以提取图像的各个方面,并在图像和大量操作之间建立刚性映射的关系。我们提出的基于DRL的ISP框架可有效地根据每个视觉任务(例如原始视觉到RGB图像恢复,2D对象检测和单眼深度估计)提高图像质量。

In this paper, we propose a multi-objective camera ISP framework that utilizes Deep Reinforcement Learning (DRL) and camera ISP toolbox that consist of network-based and conventional ISP tools. The proposed DRL-based camera ISP framework iteratively selects a proper tool from the toolbox and applies it to the image to maximize a given vision task-specific reward function. For this purpose, we implement total 51 ISP tools that include exposure correction, color-and-tone correction, white balance, sharpening, denoising, and the others. We also propose an efficient DRL network architecture that can extract the various aspects of an image and make a rigid mapping relationship between images and a large number of actions. Our proposed DRL-based ISP framework effectively improves the image quality according to each vision task such as RAW-to-RGB image restoration, 2D object detection, and monocular depth estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源