论文标题

旋转的集中连接转换:所有正交凸形的3枪手

Centralised Connectivity-Preserving Transformations by Rotation: 3 Musketeers for all Orthogonal Convex Shapes

论文作者

Connor, Matthew, Michail, Othon

论文摘要

我们研究了一个可编程物质系统的模型,该模型由位于二维正方形网格上的$ n $设备组成,该设备能够执行彼此旋转的最小机械操作。目的是将初始形状A变成目标形状B。我们有兴趣表征在这种情况下可以在始终保持全局连接性的附加约束下,可以在这种情况下相互转化的形状类别。这是$ [$ MICHAIL等人,JCSS'19 $] $打开的主要问题之一。请注意,被考虑的问题是关于转化的结构可行性,我们仅通过集中的建设性证明来处理。分布式解决方案留给将来的工作,并形成一个有趣的研究方向。过去的工作取得了一些特殊的形状类别。我们在这里考虑了正交凸形的类别,其中任何两个节点$ u,v $在网格上的水平或垂直线中,$ u $和$ v $之间没有空单元。我们开发了一种通用的集中转换,并证明,对于任何一对$ a $ a $ a $ b $一致的正交凸形形状,它可以将$ a $ a $变成$ b $。鉴于在考虑类中存在阻塞的形状,我们使用最小的3节点种子来触发转化。我们转换的运行时间是最佳$ O(n^2)$顺序移动,其中$ n = | a | = | b | $。我们留下的是一个空旷的问题,存在着一个小种子的普遍保留连接转换。我们的信念是,本文开发的技术可能对回答这一点很有用。

We study a model of programmable matter systems consisting of $n$ devices lying on a 2-dimensional square grid, which are able to perform the minimal mechanical operation of rotating around each other. The goal is to transform an initial shape A into a target shape B. We are interested in characterising the class of shapes which can be transformed into each other in such a scenario, under the additional constraint of maintaining global connectivity at all times. This was one of the main problems left open by $[$Michail et al., JCSS'19$]$. Note that the considered question is about structural feasibility of transformations, which we exclusively deal with via centralised constructive proofs. Distributed solutions are left for future work and form an interesting research direction. Past work made some progress for the special class of nice shapes. We here consider the class of orthogonal convex shapes, where for any two nodes $u, v$ in a horizontal or vertical line on the grid, there is no empty cell between $u$ and $v$. We develop a generic centralised transformation and prove that, for any pair $A$, $B$ of colour-consistent orthogonal convex shapes, it can transform $A$ into $B$. In light of the existence of blocked shapes in the considered class, we use a minimal 3-node seed to trigger the transformation. The running time of our transformation is an optimal $O(n^2)$ sequential moves, where $n=|A|=|B|$. We leave as an open problem the existence of a universal connectivity-preserving transformation with a small seed. Our belief is that the techniques developed in this paper might prove useful to answer this.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源