论文标题
SphereVlad ++:基于注意力和信号增强的视点不变描述符
SphereVLAD++: Attention-based and Signal-enhanced Viewpoint Invariant Descriptor
论文作者
论文摘要
基于激光雷达的本地化方法是用于大规模导航任务的基本模块,例如最后一英里交付和自动驾驶,并且本地化鲁棒性高度依赖于观点和3D功能提取。我们以前的工作提供了一个视角不变的描述符来处理观点差异。但是,全局描述符在无监督聚类中的信号噪声比率低,从而降低了可区分的特征提取能力。我们开发了SphereVlad ++,这是这项工作中一种引起注意的观点不变的位置识别方法。 SphereVlad ++在每个唯一区域的球形透视图上投射点云,并通过全局3D几何分布捕获本地特征及其依赖关系之间的上下文连接。作为回报,全局描述符中的群集元素以本地和全球几何形式为条件,并支持SphereVlad的原始视点不变属性。在实验中,我们评估了来自匹兹堡市的公共Kitti360数据集和自生生成的数据集的SphereVlad ++的本地化性能。实验结果表明,SphereVlad ++在小甚至完全逆转的视点差异下优于所有相对最新的3D位置识别方法,并显示0.69%和15.81%的成功检索率,比第二好的检索率更好。低计算要求和高时间效率也有助于其用于低成本机器人的应用。
LiDAR-based localization approach is a fundamental module for large-scale navigation tasks, such as last-mile delivery and autonomous driving, and localization robustness highly relies on viewpoints and 3D feature extraction. Our previous work provides a viewpoint-invariant descriptor to deal with viewpoint differences; however, the global descriptor suffers from a low signal-noise ratio in unsupervised clustering, reducing the distinguishable feature extraction ability. We develop SphereVLAD++, an attention-enhanced viewpoint invariant place recognition method in this work. SphereVLAD++ projects the point cloud on the spherical perspective for each unique area and captures the contextual connections between local features and their dependencies with global 3D geometry distribution. In return, clustered elements within the global descriptor are conditioned on local and global geometries and support the original viewpoint-invariant property of SphereVLAD. In the experiments, we evaluated the localization performance of SphereVLAD++ on both public KITTI360 datasets and self-generated datasets from the city of Pittsburgh. The experiment results show that SphereVLAD++ outperforms all relative state-of-the-art 3D place recognition methods under small or even totally reversed viewpoint differences and shows 0.69% and 15.81% successful retrieval rates with better than the second best. Low computation requirements and high time efficiency also help its application for low-cost robots.