论文标题
弯曲的动量空间等效于线性和二次概括性不确定性原理
Curved momentum space equivalent to the linear and quadratic Generalized Uncertainty Principle
论文作者
论文摘要
在这项工作中,我们加深了弯曲动量空间上普遍的不确定性原理(GUP)和量子动力学之间的对应关系。特别是,我们研究了线性和二次GUP。与早期的工作类似,双重理论中产生的曲率张量与原始公式的非坐标成正比。
In this work, we deepen the correspondence between Generalized Uncertainty Principles (GUPs) and quantum dynamics on curved momentum space. In particular, we investigate the linear and quadratic GUP. Similarly to earlier work, the resulting curvature tensor in the dual theory is proportional to the coordinate non-commutativity of the original formulation.