论文标题
高型自旋链和pólya计数的光谱
Spectrum of the Hypereclectic Spin Chain and Pólya Counting
论文作者
论文摘要
在较早的工作中,我们提出了一个生成函数,该函数编码与动态渔网量子场理论的一环扩张算子相关的可集成超级旋转链的Jordan块光谱。我们大大改善了这些生成功能的表达方式,使它们更加明确和优雅。特别是,我们对整个自旋链的情况进行处理,而不会对状态以及环状状态施加任何环状约束。后者涉及Pólya枚举定理与Q-二项式系数结合使用。
In earlier work we proposed a generating function that encodes the Jordan block spectrum of the integrable Hypereclectic spin chain, related to the one-loop dilatation operator of the dynamical fishnet quantum field theory. We significantly improve the expressions for these generating functions, rendering them much more explicit and elegant. In particular, we treat the case of the full spin chain without imposing any cyclicity constraints on the states, as well as the case of cyclic states. The latter involves the Pólya enumeration theorem in conjunction with q-binomial coefficients.