论文标题

使用基于Superpixel的CNN和CRF模型有效的细粒度分割

Efficient fine-grained road segmentation using superpixel-based CNN and CRF models

论文作者

Zohourian, Farnoush, Siegemund, Jan, Meuter, Mirko, Pauli, Josef

论文摘要

在安全舒适的驾驶中,道路场景细分是基于摄像机的高级驾驶员辅助系统(ADAS)的基本问题。尽管卷积神经网络(CNN)在语义细分任务中取得了巨大成就,但基于CNN的方法的高度计算工作仍然是一个具有挑战性的领域。在最近的工作中,我们提出了一种新颖的方法来利用CNN在合理的计算工作中为道路分割任务的优势。使用不规则的超级像素作为CNN而不是图像网格的输入的基础,该运行时受益,这大大降低了输入大小。尽管在训练和测试阶段,这种方法在训练和测试阶段都达到了明显的计算时间,但与高成本方法相比,超级像素域的较低分辨率自然降低了精度。在这项工作中,我们专注于利用条件随机场(CRF)的道路分割的改进。完善过程仅限于接触预测的道路边界的超级像素,以保持额外的计算工作。将输入减少到超级像素域,使CNN结构保持较小且有效地计算,同时保持卷积层的优势,并使它们符合ADAS的资格。应用CRF可以补偿准确性和计算效率之间的权衡。所提出的系统在Kitti Road基准测试的顶级性能算法中获得了可比性的性能及其快速推断使其特别适合实时应用。

Towards a safe and comfortable driving, road scene segmentation is a rudimentary problem in camera-based advance driver assistance systems (ADAS). Despite of the great achievement of Convolutional Neural Networks (CNN) for semantic segmentation task, the high computational efforts of CNN based methods is still a challenging area. In recent work, we proposed a novel approach to utilise the advantages of CNNs for the task of road segmentation at reasonable computational effort. The runtime benefits from using irregular super pixels as basis for the input for the CNN rather than the image grid, which tremendously reduces the input size. Although, this method achieved remarkable low computational time in both training and testing phases, the lower resolution of the super pixel domain yields naturally lower accuracy compared to high cost state of the art methods. In this work, we focus on a refinement of the road segmentation utilising a Conditional Random Field (CRF).The refinement procedure is limited to the super pixels touching the predicted road boundary to keep the additional computational effort low. Reducing the input to the super pixel domain allows the CNNs structure to stay small and efficient to compute while keeping the advantage of convolutional layers and makes them eligible for ADAS. Applying CRF compensate the trade off between accuracy and computational efficiency. The proposed system obtained comparable performance among the top performing algorithms on the KITTI road benchmark and its fast inference makes it particularly suitable for realtime applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源