论文标题

局部对称性破坏驱动驱动在多晶半导体膜中的皮秒旋转结构域的形成

Local Symmetry Breaking Drives Picosecond Spin Domain Formation in Polycrystalline Semiconducting Films

论文作者

Ashoka, Arjun, Nagane, Satyawan, Strkalj, Nives, Roose, Bart, Sung, Jooyoung, MacManus-Driscoll, Judith L., Stranks, Samuel D., Feldmann, Sascha, Rao, Akshay

论文摘要

带有自旋轨道耦合的半导体中光诱导的自旋荷利相互转换可以为无需使用外部磁场提供光学上可寻址的自旋形式的途径。一个核心问题是,所得的自旋相关电荷电流是否对结构障碍是可靠的,结构障碍是对设备应用所需的多晶半导体固有的。使用飞秒圆极化分辨的泵 - 螺旋螺旋孔在多晶卤化物钙钛矿薄膜上,我们观察到光诱导的超极化阳性的超快速形成,并且出乎意料地,在微米尺度上通过侧面尺度形成的微米负型域。此外,这些域的极化和横向传输方向在切换泵螺旋的极化时切换。微米尺度的光学第二谐波生成和垂直压电的强度变化表明,自旋结构域的形成是由于存在强烈的局部反转对称对称性通过粒间结构障碍而驱动的。我们建议这会导致空间变化的Rashba样旋转纹理,这些旋转纹理可驱动自旋Momentum锁定电流,从而导致局部自旋积累。我们的结果在多晶半导体中建立了超快速自旋结构域的形成,作为纳米级旋转磁盘物理学的新的光学寻址平台。

Photoinduced spin-charge interconversion in semiconductors with spin-orbit coupling could provide a route to optically addressable spintronics without the use of external magnetic fields. A central question is whether the resulting spin-associated charge currents are robust to structural disorder, which is inherent to polycrystalline semiconductors that are desirable for device applications. Using femtosecond circular polarization-resolved pump-probe microscopy on polycrystalline halide perovskite thin films, we observe the photoinduced ultrafast formation of spin-polarized positive and, unexpectedly, negative spin domains on the micron scale formed through lateral currents. Further, the polarization of these domains and lateral transport direction is switched upon switching the polarization of the pump helicity. Micron scale variations in the intensity of optical second-harmonic generation and vertical piezoresponse suggest that the spin domain formation is driven by the presence of strong local inversion symmetry breaking via inter-grain structural disorder. We propose that this leads to spatially varying Rashba-like spin textures that drive spin-momentum locked currents, leading to local spin accumulation. Our results establish ultrafast spin domain formation in polycrystalline semiconductors as a new optically addressable platform for nanoscale spin-device physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源