论文标题
Fock类型空间的随机零集
Random zero sets for Fock type spaces
论文作者
论文摘要
给定一个非续顺序$λ= \ {λ_n> 0 \} $,使得$ \ displayStyle \ lim_ {n \ to \ infty}λ_n= \ infty,$,我们考虑序列$ \ \ \ \ \ \ \ \ m rathcaln_λ:= = = \ weft \ weft \ weft \ weft \ weft \ {λ_ne^^nipe n \ right \} $,其中$θ_n$是独立的随机变量,均匀分布在$ [0,2π]上。$我们讨论了$ \ Mathcaln_λ$的序列$λ$上的条件,几乎肯定地肯定地是给定加权空间的零集(UNIQENTION)。相对于重量,序列$λ$的临界密度。
Given a nondecreasing sequence $Λ=\{λ_n>0\}$ such that $\displaystyle\lim_{n\to\infty} λ_n=\infty,$ we consider the sequence $\mathcal N_Λ:=\left\{λ_ne^{iθ_n},n\in\,\mathbb N\right\}$, where $θ_n$ are independent random variables uniformly distributed on $[0,2π].$ We discuss the conditions on the sequence $Λ$ under which $\mathcal N_Λ$ is a zero set (a uniqness set) of a given weighted Fock space almost surely. The critical density of the sequence $Λ$ with respect to the weight is found.