论文标题

联合和转移学习:关于对手和国防机制的调查

Federated and Transfer Learning: A Survey on Adversaries and Defense Mechanisms

论文作者

Hallaji, Ehsan, Razavi-Far, Roozbeh, Saif, Mehrdad

论文摘要

联邦学习的出现在维持隐私的同时,促进了机器学习模型之间的大规模数据交换。尽管历史悠久,但联邦学习正在迅速发展,以使更广泛的使用更加实用。该领域中最重要的进步之一是将转移学习纳入联邦学习,这克服了基本联邦学习的基本限制,尤其是在安全方面。本章从安全的角度进行了有关联邦和转移学习的交集的全面调查。这项研究的主要目标是发现可能损害使用联合和转移学习的系统的隐私和性能的潜在漏洞和防御机制。

The advent of federated learning has facilitated large-scale data exchange amongst machine learning models while maintaining privacy. Despite its brief history, federated learning is rapidly evolving to make wider use more practical. One of the most significant advancements in this domain is the incorporation of transfer learning into federated learning, which overcomes fundamental constraints of primary federated learning, particularly in terms of security. This chapter performs a comprehensive survey on the intersection of federated and transfer learning from a security point of view. The main goal of this study is to uncover potential vulnerabilities and defense mechanisms that might compromise the privacy and performance of systems that use federated and transfer learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源