论文标题
通过实体覆盖范围控制提高抽象性摘要的忠诚
Improving the Faithfulness of Abstractive Summarization via Entity Coverage Control
论文作者
论文摘要
利用预训练语言模型的抽象性摘要系统在基准数据集上取得了卓越的结果。但是,这种模型已被证明更容易幻觉,这些事实对输入上下文不忠。在本文中,我们提出了一种通过实体覆盖范围控制(ECC)来补救实体级外部幻觉的方法。我们首先计算实体覆盖精度,并为每个培训示例提供相应的控制代码,这隐含地指导该模型在训练阶段识别忠实的内容。我们通过从Wikipedia提取的大但嘈杂的数据中进行中间调整进一步扩展了我们的方法,以解锁零击摘要。我们表明,根据我们在三个基准数据集XSUM,PubMed和Samsum的实验结果,提出的方法会导致在监督微调和零射击设置中更加忠实,显着的抽象性摘要。
Abstractive summarization systems leveraging pre-training language models have achieved superior results on benchmark datasets. However, such models have been shown to be more prone to hallucinate facts that are unfaithful to the input context. In this paper, we propose a method to remedy entity-level extrinsic hallucinations with Entity Coverage Control (ECC). We first compute entity coverage precision and prepend the corresponding control code for each training example, which implicitly guides the model to recognize faithfulness contents in the training phase. We further extend our method via intermediate fine-tuning on large but noisy data extracted from Wikipedia to unlock zero-shot summarization. We show that the proposed method leads to more faithful and salient abstractive summarization in supervised fine-tuning and zero-shot settings according to our experimental results on three benchmark datasets XSum, Pubmed, and SAMSum of very different domains and styles.