论文标题

安全的半监督图卷积网络

A Safe Semi-supervised Graph Convolution Network

论文作者

Yang, Zhi, Yan, Yadong, Gan, Haitao, Zhao, Jing, Ye, Zhiwei

论文摘要

在半监督的学习领域中,作为GNN的变体模型,图形卷积网络(GCN)通过将卷积引入GNN来实现非欧盟数据的有希望的结果。但是,GCN及其变体模型无法安全地使用风险未标记数据的信息,这将降低半监督学习的性能。因此,我们提出了一个安全的GCN框架(SAFE-GCN),以提高学习绩效。在Safe-GCN中,我们设计了一个迭代过程,以标记未标记的数据。在每次迭代中,学会了GCN及其监督版本(S-GCN),以高度信心找到未标记的数据。然后将高信心的无标记数据及其伪标签添加到标签集中。最后,两个添加了未标记的数据和标记的数据都用于训练S-GCN,该S-GCN可以安全探索风险未标记的数据,并可以安全使用大量未标记的数据。在三个众所周知的引用网络数据集上评估了安全性GCN的性能,并且获得的结果证明了该框架对几种基于图的半监督学习方法的有效性。

In the semi-supervised learning field, Graph Convolution Network (GCN), as a variant model of GNN, has achieved promising results for non-Euclidean data by introducing convolution into GNN. However, GCN and its variant models fail to safely use the information of risk unlabeled data, which will degrade the performance of semi-supervised learning. Therefore, we propose a Safe GCN framework (Safe-GCN) to improve the learning performance. In the Safe-GCN, we design an iterative process to label the unlabeled data. In each iteration, a GCN and its supervised version(S-GCN) are learned to find the unlabeled data with high confidence. The high-confidence unlabeled data and their pseudo labels are then added to the label set. Finally, both added unlabeled data and labeled ones are used to train a S-GCN which can achieve the safe exploration of the risk unlabeled data and enable safe use of large numbers of unlabeled data. The performance of Safe-GCN is evaluated on three well-known citation network datasets and the obtained results demonstrate the effectiveness of the proposed framework over several graph-based semi-supervised learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源