论文标题
数值半径不平等的延伸
Orlicz extension of Numerical radius inequalities
论文作者
论文摘要
在本文中,我们通过使用Orlicz函数和Hermite-Hadamard不平等实现了在希尔伯特空间上定义的新的和改进的数值半径不平等。已经获得了涉及数值半径的各种不平等的上限。最后,我们计算了形式的块矩阵的数值半径的上限$ \ begin {bmatrix} o&p \\ q&o \ end end {bmatrix} $,其中$ p,q $是希尔伯特空间上的任何有限的线性操作员。
In this paper, we achieve new and improved numerical radius inequalities of operators defined on a Hilbert space by using Orlicz function and Hermite-Hadamard inequality. The upper bounds of various inequalities involving numerical radii have been obtained. Finally, we compute an upper bound of the numerical radius for block matrices of the form $\begin{bmatrix}O & P\\Q & O \end{bmatrix}$, where $P, Q$ are any bounded linear operators on a Hilbert space.