论文标题

一种深度学习方法,用于解决随机系统的概率密度演变

A Deep Learning Approach for the solution of Probability Density Evolution of Stochastic Systems

论文作者

Pourtakdoust, Seid H., Khodabakhsh, Amir H.

论文摘要

概率密度演化的推导提供了对许多随机系统及其性能的行为的宝贵洞察力。但是,对于大多数实时应用程序,对概率密度演化的数值确定是一项艰巨的任务。后者是由于所需的时间和空间离散方案引起的,这些方案使大多数计算解决方案过于效率和不切实际。在这方面,有效的计算替代模型的开发至关重要。关于物理受限网络的最新研究表明,可以通过编码对深神经网络的物理洞察力来实现合适的替代物。为此,目前的工作介绍了Deeppdem,它利用物理信息网络的概念通过提出深度学习方法来解决概率密度的演变。 Deeppdem了解随机结构的一般密度演化方程(GDEE)。这种方法为无网格学习方法铺平了道路,该方法可以通过出现先前的仿真数据解决密度演化问题。此外,在优化方案或实时应用中,在任何其他时空点上,它也可以作为溶液的有效替代物。为了证明所提出的框架的潜在适用性,研究了两个具有不同激活功能的网络架构以及两个优化器。关于三个不同问题的数值实现验证了所提出方法的准确性和功效。

Derivation of the probability density evolution provides invaluable insight into the behavior of many stochastic systems and their performance. However, for most real-time applica-tions, numerical determination of the probability density evolution is a formidable task. The latter is due to the required temporal and spatial discretization schemes that render most computational solutions prohibitive and impractical. In this respect, the development of an efficient computational surrogate model is of paramount importance. Recent studies on the physics-constrained networks show that a suitable surrogate can be achieved by encoding the physical insight into a deep neural network. To this aim, the present work introduces DeepPDEM which utilizes the concept of physics-informed networks to solve the evolution of the probability density via proposing a deep learning method. DeepPDEM learns the General Density Evolution Equation (GDEE) of stochastic structures. This approach paves the way for a mesh-free learning method that can solve the density evolution problem with-out prior simulation data. Moreover, it can also serve as an efficient surrogate for the solu-tion at any other spatiotemporal points within optimization schemes or real-time applica-tions. To demonstrate the potential applicability of the proposed framework, two network architectures with different activation functions as well as two optimizers are investigated. Numerical implementation on three different problems verifies the accuracy and efficacy of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源