论文标题

“即使……” - 拒绝的多样性的半例解释

"Even if ..." -- Diverse Semifactual Explanations of Reject

论文作者

Artelt, André, Hammer, Barbara

论文摘要

基于机器学习的决策制定系统在安全关键领域中应用需要可靠的高确定性预测。为此,可以通过拒绝选项来扩展系统,该选项允许系统拒绝输入,而只有一个可以不可接受的低确定性进行预测。虽然能够拒绝不确定的样本很重要,但能够解释为什么拒绝特定样本也很重要。随着可解释的AI(XAI)的持续兴起,已经开发了许多基于机器学习系统的解释方法 - 但是,解释拒绝选项仍然是一个新的领域,在这种新领域中,几乎没有事先的工作。 在这项工作中,我们建议通过半就意义解释解释拒绝,这是基于示例的解释方法的实例,在XAI社区中尚未广泛考虑它们。我们提出了对任意拒绝选项的半同性恋解释的概念建模,并在基于共形预测的拒绝选项上对特定的实现进行经验评估。

Machine learning based decision making systems applied in safety critical areas require reliable high certainty predictions. For this purpose, the system can be extended by an reject option which allows the system to reject inputs where only a prediction with an unacceptably low certainty would be possible. While being able to reject uncertain samples is important, it is also of importance to be able to explain why a particular sample was rejected. With the ongoing rise of eXplainable AI (XAI), a lot of explanation methodologies for machine learning based systems have been developed -- explaining reject options, however, is still a novel field where only very little prior work exists. In this work, we propose to explain rejects by semifactual explanations, an instance of example-based explanation methods, which them self have not been widely considered in the XAI community yet. We propose a conceptual modeling of semifactual explanations for arbitrary reject options and empirically evaluate a specific implementation on a conformal prediction based reject option.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源