论文标题

$ \ Mathcal {d}^{(0)} $ - 正式Abelian方案的模块

Fourier-Mukaï transform for $\mathcal{D}^{(0)}$-modules over formal abelian schemes

论文作者

Viguier, Florian

论文摘要

In 1996, Rothstein and Laumon simultaneously constructed a Fourier-Mukai transform for D-modules over a locally noetherian base of characteristic 0. This functor induces an equivalence of categories between quasi-coherent sheaves of D-modules over an abelian variety A and quasicoherent sheaves of O-modules over its universal vectorial extension A. In this article, we define a ABELIAN形式方案A/S = SPF(V)上D模块的傅立叶 - 木叶变换,其中v是一个离散的估值环,我们讨论了傅立叶 - 木叶变换的经典结果的扩展到此算术案例。

In 1996, Rothstein and Laumon simultaneously constructed a Fourier-Mukai transform for D-modules over a locally noetherian base of characteristic 0. This functor induces an equivalence of categories between quasi-coherent sheaves of D-modules over an abelian variety A and quasicoherent sheaves of O-modules over its universal vectorial extension A. In this article, we define a Fourier-Mukai transform for D-modules on an abelian formal scheme A/S = Spf (V), where V is a discrete valuation ring, and we discuss the extension of the classical results of Fourier-Mukai transform to this arithmetic case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源