论文标题

SESS:通过缩放和滑动增强显着性

SESS: Saliency Enhancing with Scaling and Sliding

论文作者

Tursun, Osman, Denman, Simon, Sridharan, Sridha, Fookes, Clinton

论文摘要

在几个机器学习应用领域,包括可解释的AI和弱监督的对象检测和细分,高质量的显着性图至关重要。已经开发了许多技术来使用神经网络提高显着性。但是,它们通常仅限于特定的显着性可视化方法或显着性问题。我们提出了一种新型的显着性增强方法,称为SESS(通过缩放和滑动提高显着性)。这是对现有显着性图生成方法的方法和模型不可扩展。借助SESS,现有的显着性方法变得稳健,可在规模差异,目标对象的多次出现,存在分散器的存在以及产生较少的嘈杂和更具歧视性显着性图。 SESS通过从不同区域的不同尺度上从多个斑块中提取的显着图来提高显着性,并使用新型的融合方案结合了这些单独的地图,该方案结合了通道的重量和空间加权平均值。为了提高效率,我们引入了一个预过滤步骤,该步骤可以排除非信息显着图以提高效率,同时仍提高整体结果。我们在对象识别和检测基准上评估SESS可以取得重大改进。该守则公开发布,以使研究人员能够验证绩效和进一步发展。代码可用:https://github.com/neouyghur/sess

High-quality saliency maps are essential in several machine learning application areas including explainable AI and weakly supervised object detection and segmentation. Many techniques have been developed to generate better saliency using neural networks. However, they are often limited to specific saliency visualisation methods or saliency issues. We propose a novel saliency enhancing approach called SESS (Saliency Enhancing with Scaling and Sliding). It is a method and model agnostic extension to existing saliency map generation methods. With SESS, existing saliency approaches become robust to scale variance, multiple occurrences of target objects, presence of distractors and generate less noisy and more discriminative saliency maps. SESS improves saliency by fusing saliency maps extracted from multiple patches at different scales from different areas, and combines these individual maps using a novel fusion scheme that incorporates channel-wise weights and spatial weighted average. To improve efficiency, we introduce a pre-filtering step that can exclude uninformative saliency maps to improve efficiency while still enhancing overall results. We evaluate SESS on object recognition and detection benchmarks where it achieves significant improvement. The code is released publicly to enable researchers to verify performance and further development. Code is available at: https://github.com/neouyghur/SESS

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源