论文标题

使用鸟类视图表示和深度学习在高速公路上的车辆轨迹预测

Vehicle Trajectory Prediction on Highways Using Bird Eye View Representations and Deep Learning

论文作者

Izquierdo, Rubén, Quintanar, Álvaro, Llorca, David Fernández, Daza, Iván García, Hernández, Noelia, Parra, Ignacio, Sotelo, Miguel Ángel

论文摘要

这项工作提出了一种新的方法,可以使用有效的鸟类视图表示和卷积神经网络在高速公路场景中预测车辆轨迹。使用基本的视觉表示,很容易将车辆位置,运动历史,道路配置和车辆相互作用轻松包括在预测模型中。 U-NET模型已被选为使用图像到图像回归方法生成场景的未来视觉表示的预测内核。已经实施了一种从生成的图形表示中提取车辆位置以实现子像素分辨率的方法。该方法已通过预防数据集(一个板载传感器数据集)进行了培训和评估。已经评估了不同的网络配置和场景表示。这项研究发现,使用线性终端层具有6个深度水平的U-NET和车辆的高斯表示是最佳性能配置。发现泳道标记的使用不会改善预测性能。平均预测误差为0.47和0.38米,对于纵向和横向坐标的最终预测误差分别为0.76和0.53米,预测轨迹长度为2.0秒。与基线方法相比,预测误差低至50%。

This work presents a novel method for predicting vehicle trajectories in highway scenarios using efficient bird's eye view representations and convolutional neural networks. Vehicle positions, motion histories, road configuration, and vehicle interactions are easily included in the prediction model using basic visual representations. The U-net model has been selected as the prediction kernel to generate future visual representations of the scene using an image-to-image regression approach. A method has been implemented to extract vehicle positions from the generated graphical representations to achieve subpixel resolution. The method has been trained and evaluated using the PREVENTION dataset, an on-board sensor dataset. Different network configurations and scene representations have been evaluated. This study found that U-net with 6 depth levels using a linear terminal layer and a Gaussian representation of the vehicles is the best performing configuration. The use of lane markings was found to produce no improvement in prediction performance. The average prediction error is 0.47 and 0.38 meters and the final prediction error is 0.76 and 0.53 meters for longitudinal and lateral coordinates, respectively, for a predicted trajectory length of 2.0 seconds. The prediction error is up to 50% lower compared to the baseline method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源