论文标题
平面$ \ MATHCAL {n} = 4 $ sym理论中短运算符的结构常数
Structure constants of short operators in planar $\mathcal{N}=4$ SYM theory
论文作者
论文摘要
在有限耦合的情况下,我们为平面$ \ Mathcal {n} = 4 $ Super-yang-Mills理论中的单个滑动运算符的三点函数提供了一个基于集成性的猜想。我们的建议基于长运算符的结构常数的六角形表示,我们将使用来自TBA/QSC形式主义的数据结合任何长度的操作员。我们在弱和强耦合下对我们的猜想进行了各种测试,通过5个循环找到了与仪表理论的一致性,以最短的三分函数以及经典限制的字符串理论。
We present an integrability-based conjecture for the three-point functions of single-trace operators in planar $\mathcal{N}=4$ super-Yang-Mills theory at finite coupling, in the case where two operators are protected. Our proposal is based on the hexagon representation for structure constants of long operators, which we complete to incorporate operators of any length using data from the TBA/QSC formalism. We perform various tests of our conjecture, at weak and strong coupling, finding agreement with the gauge theory through 5 loops for the shortest three-point function and with string theory in the classical limit.