论文标题

具有与角度无关的窄带发射的高效极化光发射二极管发射

Highly efficient polaritonic light emitting diodes with angle-independent narrowband emission

论文作者

Mischok, Andreas, Hillebrandt, Sabina, Kwon, Seonil, Gather, Malte C.

论文摘要

许多光电设备都需要与角度无关的窄带发射,从高清显示到传感器。但是,由于内在障碍,有机物和钙钛矿等电发光设备(例如有机物和钙钛矿)的新兴材料在光谱上发射范围广泛。将这种排放耦合到光学共振可以降低线宽,但以遗传谐振器的严重角度分散为代价。将无分散激子状态与窄带光学微型腔内强烈耦合可以克服这个问题。然而,从产生的偏振子中泵出的电发射受到较差的效率阻碍。在这里,我们通过引入助手强耦合层来避免淬火引起的效率损失,从而提出了最先进有机LED(OLEDS)的普遍概念。我们意识到红色和绿色发光,窄带(FWHM <20 nm)和频谱可调的极性OLEDS,具有高达10%的外部量子效率和高亮度(> 20,000 cd M $^{ - 2} $,在5 V)。优化腔体功能引起和耦合强度可以通过超高分散(60°倾斜下的光谱移动)实现发射。这些结果对按需北极星排放具有重要意义,并证明了强光结合对下一代光电子的实际意义,尤其是显示技术。

Angle-independent, narrowband emission is required for many optoelectronic devices, ranging from high-definition displays to sensors. However, emerging materials for electroluminescent devices, such as organics and perovskites, show spectrally broad emission due to intrinsic disorder. Coupling this emission to an optical resonance reduces the linewidth, but at the cost of inheriting the severe angular dispersion of the resonator. Strongly coupling a dispersionless exciton state to a narrowband optical microcavity could overcome this issue; however, electrically pumped emission from the resulting polaritons has been hampered by poor efficiencies. Here, we present a universal concept for polariton-based emission from state-of-the-art organic LEDs (OLEDs) by introducing an assistant strong coupling layer, thus avoiding quenching-induced efficiency losses. We realize red- and green-emitting, narrowband (FWHM <20 nm) and spectrally tuneable polaritonic OLEDs with up to 10% external quantum efficiency and high luminance (>20,000 cd m$^{-2}$ at 5 V). Optimizing cavity detuning and coupling strength allows to achieve emission with ultralow-dispersion (<10 nm spectral shift at 60° tilt). These results have significant implications for on-demand polariton emission and demonstrate the practical relevance of strong light-matter coupling for next-generation optoelectronics, particularly display technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源