论文标题
TANET:用于RGB-D显着对象检测的基于变压器的非对称网络
TANet: Transformer-based Asymmetric Network for RGB-D Salient Object Detection
论文作者
论文摘要
现有的RGB-D SOD方法主要依赖于对称的两个基于CNN的网络来分别提取RGB和深度通道特征。但是,对称传统网络结构有两个问题:首先,CNN在学习全球环境中的能力是有限的。其次,对称的两流结构忽略了模态之间的固有差异。在本文中,我们提出了一个基于变压器的非对称网络(TANET),以解决上述问题。我们采用了变压器(PVTV2)的强大功能提取能力,从RGB数据中提取全局语义信息,并设计轻量级的CNN骨链(LWDEPTHNET),以从深度数据中提取空间结构信息,而无需预训练。不对称混合编码器(AHE)有效地减少了模型中参数的数量,同时不牺牲性能而增加速度。然后,我们设计了一个跨模式特征融合模块(CMFFM),该模块增强并互相融合了RGB和深度特征。最后,我们将边缘预测添加为辅助任务,并提出一个边缘增强模块(EEM)以生成更清晰的轮廓。广泛的实验表明,我们的方法在六个公共数据集上实现了超过14种最先进的RGB-D方法的卓越性能。我们的代码将在https://github.com/lc012463/tanet上发布。
Existing RGB-D SOD methods mainly rely on a symmetric two-stream CNN-based network to extract RGB and depth channel features separately. However, there are two problems with the symmetric conventional network structure: first, the ability of CNN in learning global contexts is limited; second, the symmetric two-stream structure ignores the inherent differences between modalities. In this paper, we propose a Transformer-based asymmetric network (TANet) to tackle the issues mentioned above. We employ the powerful feature extraction capability of Transformer (PVTv2) to extract global semantic information from RGB data and design a lightweight CNN backbone (LWDepthNet) to extract spatial structure information from depth data without pre-training. The asymmetric hybrid encoder (AHE) effectively reduces the number of parameters in the model while increasing speed without sacrificing performance. Then, we design a cross-modal feature fusion module (CMFFM), which enhances and fuses RGB and depth features with each other. Finally, we add edge prediction as an auxiliary task and propose an edge enhancement module (EEM) to generate sharper contours. Extensive experiments demonstrate that our method achieves superior performance over 14 state-of-the-art RGB-D methods on six public datasets. Our code will be released at https://github.com/lc012463/TANet.