论文标题

DailyTalk:用于对话文本到语音的对话数据集

DailyTalk: Spoken Dialogue Dataset for Conversational Text-to-Speech

论文作者

Lee, Keon, Park, Kyumin, Kim, Daeyoung

论文摘要

当前的大多数文本到语音(TTS)数据集是单个话语的集合,几乎没有对话方面。在本文中,我们介绍了DailyTalk,这是一个专为对话tts设计的高质量对话语音数据集。我们从开放域对话数据集Dabordialog中取样,修改并记录了2,541个对话,以继承其注释的属性。在我们的数据集之外,我们将先前的工作扩展为我们的基准,在该基线中,非自动回忆TTS的对话中的历史信息为条件。从一般和我们的新型指标的基线实验中,我们表明每日talk可以用作一般的TTS数据集,而且我们的基线还可以代表来自DailyTalk的上下文信息。 DailyTalk数据集和基线代码可自由使用CC-BY-SA 4.0许可证。

The majority of current Text-to-Speech (TTS) datasets, which are collections of individual utterances, contain few conversational aspects. In this paper, we introduce DailyTalk, a high-quality conversational speech dataset designed for conversational TTS. We sampled, modified, and recorded 2,541 dialogues from the open-domain dialogue dataset DailyDialog inheriting its annotated attributes. On top of our dataset, we extend prior work as our baseline, where a non-autoregressive TTS is conditioned on historical information in a dialogue. From the baseline experiment with both general and our novel metrics, we show that DailyTalk can be used as a general TTS dataset, and more than that, our baseline can represent contextual information from DailyTalk. The DailyTalk dataset and baseline code are freely available for academic use with CC-BY-SA 4.0 license.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源