论文标题

长文档摘要的经验调查:数据集,模型和指标

An Empirical Survey on Long Document Summarization: Datasets, Models and Metrics

论文作者

Koh, Huan Yee, Ju, Jiaxin, Liu, Ming, Pan, Shirui

论文摘要

诸如学术文章和商业报告之类的长期文件一直是详细说明重要问题和需要额外关注的复杂主题的标准格式。自动汇总系统可以有效地将长文档置于简短而简洁的文本中以封装最重要的信息,因此对于帮助读者的理解非常重要。最近,随着神经体系结构的出现,已经做出了重大的研究工作,以推动自动文本摘要系统,以及有关将这些系统扩展到长期文档领域的挑战的大量研究。在这项调查中,我们对其研究环境的三个主要组成部分进行了有关长期文档摘要的研究以及系统评估的全面概述:基准数据集,汇总模型和评估指标。对于每个组成部分,我们在长期汇总的背景下组织文献,并进行经验分析,以扩大有关当前研究进度的观点。经验分析包括一项研究基准数据集的内在特征,摘要模型的多维分析以及摘要评估指标的综述。根据总体发现,我们通过提出可能在这个快速增长的领域提出可能将来探索的方向来得出结论。

Long documents such as academic articles and business reports have been the standard format to detail out important issues and complicated subjects that require extra attention. An automatic summarization system that can effectively condense long documents into short and concise texts to encapsulate the most important information would thus be significant in aiding the reader's comprehension. Recently, with the advent of neural architectures, significant research efforts have been made to advance automatic text summarization systems, and numerous studies on the challenges of extending these systems to the long document domain have emerged. In this survey, we provide a comprehensive overview of the research on long document summarization and a systematic evaluation across the three principal components of its research setting: benchmark datasets, summarization models, and evaluation metrics. For each component, we organize the literature within the context of long document summarization and conduct an empirical analysis to broaden the perspective on current research progress. The empirical analysis includes a study on the intrinsic characteristics of benchmark datasets, a multi-dimensional analysis of summarization models, and a review of the summarization evaluation metrics. Based on the overall findings, we conclude by proposing possible directions for future exploration in this rapidly growing field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源