论文标题

巷道:整合GNN以预测驾驶员的车道变更意图

Lane-GNN: Integrating GNN for Predicting Drivers' Lane Change Intention

论文作者

Wu, Hongde, Liu, Mingming

论文摘要

如今,智能高速公路交通网络在现代运输基础设施中发挥了重要作用。可以在高速公路交通网络中促进可变速度限制(VSL)系统,以提供有用的动态速度限制信息,供驾驶员增强安全性。这种系统通常以稳定的咨询速度设计,因此当驾驶员遵循速度时,流量可以顺利移动,而不是在充满缝隙并在拥塞时放慢速度时加速。但是,当驾驶员离开由VSL系统管理的道路网络时,对车辆行为的研究几乎没有引起关注,VSL系统可能在很大程度上涉及意外的加速,减速和频繁的车道变化,从而造成随后的高速公路道路使用者的混乱。在本文中,由于驾驶员在VSL系统之后的高速公路交通网络上的车道变更意图,我们将重点关注交通流异常的检测。更具体地说,我们将图形建模应用于流行的移动模拟器Sumo在路段级别生成的流量数据。然后,我们使用拟议的Lane-GNN方案(注意时间表卷积神经网络)评估车道变化检测的性能,并将其性能与时间卷积神经网络(TCNN)作为我们的基线进行比较。我们的实验结果表明,在某些假设下,提出的巷道GNN可以在90秒内以99.42%的精度检测驾驶员的车道变化意图。最后,将一些解释方法应用于受过训练的模型,以进一步说明我们的发现。

Nowadays, intelligent highway traffic network is playing an important role in modern transportation infrastructures. A variable speed limit (VSL) system can be facilitated in the highway traffic network to provide useful and dynamic speed limit information for drivers to travel with enhanced safety. Such system is usually designed with a steady advisory speed in mind so that traffic can move smoothly when drivers follow the speed, rather than speeding up whenever there is a gap and slowing down at congestion. However, little attention has been given to the research of vehicles' behaviours when drivers left the road network governed by a VSL system, which may largely involve unexpected acceleration, deceleration and frequent lane changes, resulting in chaos for the subsequent highway road users. In this paper, we focus on the detection of traffic flow anomaly due to drivers' lane change intention on the highway traffic networks after a VSL system. More specifically, we apply graph modelling on the traffic flow data generated by a popular mobility simulator, SUMO, at road segment levels. We then evaluate the performance of lane changing detection using the proposed Lane-GNN scheme, an attention temporal graph convolutional neural network, and compare its performance with a temporal convolutional neural network (TCNN) as our baseline. Our experimental results show that the proposed Lane-GNN can detect drivers' lane change intention within 90 seconds with an accuracy of 99.42% under certain assumptions. Finally, some interpretation methods are applied to the trained models with a view to further illustrate our findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源