论文标题

$bφ^{4} $模型中的扭结散射

Scattering of kinks in the $Bφ^{4}$ model

论文作者

Mohammadi, Mohammad, Momeni, Ehsan

论文摘要

在这项研究中,基于$φ^4 $模型,引入了一种新型号(称为$bφ^4 $模型),其中尺寸大于$ 1 $的田地值的潜在形式乘以正数$ b $。与单个扭结(Antikink)解决方案有关的所有功能都保持不变,并且独立于参数$ b $。但是,当扭结与碰撞中的抗Kink相互作用时,结果将大大取决于参数$ b $。因此,对于扭结 - 安提奇克碰撞,许多功能,例如临界速度,固定初始速度的输出速度,两次弹跳逃生窗口,极端值和分形结构在参数$ b $方面都是详细考虑的。明确证实了参数$ b $在扭结碰撞中几乎孤子行为的出现中的作用。可以看到逃生窗口图中的分形结构,用于制度$ b \ leq 1 $。但是,对于制度$ b> 1 $,随着$ b = 3.3 $,这种行为逐渐变得模糊和混乱。 CASE $ B = 3.3 $再次获得为关键速度曲线的最小值作为$ B $的函数。对于制度$ 3.3 <b \ leq 10 $,混乱的行为逐渐减少。但是,从未观察到分形结构。然而,这表明,尽管逃生窗的模糊和改组,但它们遵循共鸣能量交换理论的规则。

In this study, based on the $φ^4$ model, a new model (called the $Bφ^4$ model) is introduced in which the potential form for the values of the field whose magnitudes are greater than $1$ is multiplied by the positive number $B$. All features related to a single kink (antikink) solution remain unchanged and are independent of parameter $B$. However, when a kink interacts with an antikink in a collision, the results will significantly depend on parameter $B$. Hence, for kink-antikink collisions, many features such as the critical speed, output velocities for a fixed initial speed, two-bounce escape windows, extreme values, and fractal structure in terms of parameter $B$ are considered in detail numerically. The role of parameter $B$ in the emergence of a nearly soliton behavior in kink-antikink collisions at some initial speed intervals is clearly confirmed. The fractal structure in the diagrams of escape windows is seen for the regime $B\leq 1$. However, for the regime $B >1$, this behavior gradually becomes fuzzing and chaotic as it approaches $B = 3.3$. The case $B = 3.3$ is obtained again as the minimum of the critical speed curve as a function of $B$. For the regime $3.3< B \leq 10$, the chaotic behavior gradually decreases. However, a fractal structure is never observed. Nevertheless, it is shown that despite the fuzzing and shuffling of the escape windows, they follow the rules of the resonant energy exchange theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源