论文标题

刚性分层

The Stratification of Rigidity

论文作者

Bourjaily, Jacob L., Kalyanapuram, Nikhil

论文摘要

我们表明,所有平面的主体基础存在,无质量的四维理论中的两环幅度均具有刚度的完全分层 - 每个集成均为纯且严格地是polysogarithmic,或(纯且(纯净的)严格的Elliptic-Polylylogarithmicic,每个集成都涉及后来的单个Elliptic curve。可以说这样的集成具有明确的刚性。

We show that a master integrand basis exists for all planar, two-loop amplitudes in massless four-dimensional theories which is fully stratified by rigidity -- with each integrand being either pure and strictly polylogarithmic or (pure and) strictly elliptic-polylogarithmic, with each of the later involving a single elliptic curve. Such integrands can be said to have definite rigidity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源