论文标题

超冷液体的生命中的三十毫秒

Thirty milliseconds in the life of a supercooled liquid

论文作者

Scalliet, Camille, Guiselin, Benjamin, Berthier, Ludovic

论文摘要

我们将掉期蒙特卡洛算法与长多CPU分子动力学模拟结合在一起,以分析模型超冷的液体的平衡弛豫动力学在一个时间窗口中,覆盖了10个数量级的数量级,以供实验性玻璃过渡温度$ t_g $。 \ rev {几个}时间相关函数的分析结合到粒子运动的时空分辨率,使我们能够阐明深层过冷液体中平衡动力学的性质。我们发现,结构放松在罕见的本地化区域的早期开始,其特征是等待时间分布,该区域在$ t_g $附近开发了一项功率法。在更长的时候,随着$ t_g $的接近,放松事件会随着这些区域的增加而增加。这种积累会带来随时间的时间,较大的,依赖温度的动态指数的幂律生长。过去的平均松弛时间,由于放松事件在其边界处发生,随着时间的流逝,未删除的域随着时间的流逝而缓慢收缩。我们的结果提供了负责玻璃动力学关键实验特征的粒子运动的完整描述,从松弛光谱的形状和温度演变到动态异质性的核心特征。它们还提供了微观的基础,以了解深层冷冷液体中动态促进的出现,并使我们能够重新评估玻璃过渡的理论描述。

We combine the swap Monte Carlo algorithm to long multi-CPU molecular dynamics simulations to analyse the equilibrium relaxation dynamics of model supercooled liquids over a time window covering ten orders of magnitude for temperatures down to the experimental glass transition temperature $T_g$. The analysis of \rev{several} time correlation functions coupled to spatio-temporal resolution of particle motion allow us to elucidate the nature of the equilibrium dynamics in deeply supercooled liquids. We find that structural relaxation starts at early times in rare localised regions characterised by a waiting time distribution that develops a power law near $T_g$. At longer times, relaxation events accumulate with increasing probability in these regions as $T_g$ is approached. This accumulation leads to a power-law growth of the linear extension of relaxed domains with time with a large, temperature-dependent dynamic exponent. Past the average relaxation time, unrelaxed domains slowly shrink with time due to relaxation events happening at their boundaries. Our results provide a complete microscopic description of the particle motion responsible for key experimental signatures of glassy dynamics, from the shape and temperature evolution of relaxation spectra to the core features of dynamic heterogeneity. They also provide a microscopic basis to understand the emergence of dynamic facilitation in deeply supercooled liquids and allow us to critically reassess theoretical descriptions of the glass transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源