论文标题
从抗 - 极性到太阳样差异旋转的过渡:对prandtl数的依赖性
Transition from anti-solar to solar-like differential rotation: Dependence on Prandtl number
论文作者
论文摘要
(删节)上下文:由于湍流对流和旋转的相互作用,诸如太阳等晚期恒星旋转。目的:该研究的目的是研究热prandtl数量对从抗 - 极(慢赤道,快速杆)到太阳能(快速赤道,慢速杆)差异旋转的过渡的影响。方法:半全球球形楔形几何形状中的三维流体动力和磁流体动力模拟用于模拟太阳能恒星的对流区域。结果:随着PRANDTL数量的减少,对流速度幅度的总体幅度会增加。从抗 - 极性到太阳样差异旋转的过渡对低于统一的prandtl数字的prandtl数字不敏感,但是对于大于统一的prandtl数字,太阳样的差异旋转变得更难激发。磁场和更湍流的磁场和磁性较高的雷诺数有助于在近交易案例中实现太阳样的差异旋转。太阳样差异旋转仅在赤道径向向外的角动量转运的情况下发生。赤道附近这种向外运输的主要贡献是由于繁殖热rossby波。结论:在当前研究中探索的参数方案中,差异旋转仅对较大的prandtl数字敏感。磁场对差异旋转具有更大的影响,尽管在本研究中推断出的小规模发电机的存在并未导致截然不同的结果。鉴于太阳在太阳中没有检测,模拟中热rossby波的主导地位令人困惑。当前的模拟与当前流行的差分旋转平均场理论不相容。
(abridged) Context: Late-type stars such as the Sun rotate differentially due to the interaction of turbulent convection and rotation. Aims: The aim of the study is to investigate the effects of the thermal Prandtl number on the transition from anti-solar (slow equator, fast poles) to solar-like (fast equator, slow poles) differential rotation. Methods: Three-dimensional hydrodynamic and magnetohydrodynamic simulations in semi-global spherical wedge geometry are used to model convection zones of solar-like stars. Results: The overall convective velocity amplitude increases as the Prandtl number decreases in accordance with earlier studies. The transition from anti-solar to solar-like differential rotation is insensitive to the Prandtl number for Prandtl numbers below unity but for Prandtl numbers greater than unity, solar-like differential rotation becomes significantly harder to excite. Magnetic fields and more turbulent regimes with higher fluid and magnetic Reynolds numbers help in achieving solar-like differential rotation in near-transition cases. Solar-like differential rotation occurs only in cases with radially outward angular momentum transport at the equator. The dominant contribution to such outward transport near the equator is due to prograde propagating thermal Rossby waves. Conclusions: The differential rotation is sensitive to the Prandtl number only for large Prandtl numbers in the parameter regime explored in the current study. Magnetic fields have a greater effect on the differential rotation, although the inferred presence of a small-scale dynamo does not lead to drastically different results in the present study. The dominance of the thermal Rossby waves in the simulations is puzzling given the non-detection in the Sun. The current simulations are shown to be incompatible with the currently prevailing mean-field theory of differential rotation.