论文标题

用图卷积网络进行时间戳监督的动作分割

Timestamp-Supervised Action Segmentation with Graph Convolutional Networks

论文作者

Khan, Hamza, Haresh, Sanjay, Ahmed, Awais, Siddiqui, Shakeeb, Konin, Andrey, Zia, M. Zeeshan, Tran, Quoc-Huy

论文摘要

我们引入了一种新型的时间戳记监督,以进行时间活动分割。我们的主要贡献是图形卷积网络,该网络以端到端的方式学习,以利用相邻帧之间的框架特征和连接,以从稀疏的时间戳标签中生成密集的框架标签。然后,生成的密集框架标签可用于训练分割模型。此外,我们还提出了一个用于交替学习分割模型和图形卷积模型的框架,该模型首先初始化,然后迭代地完善学习模型。在四个公共数据集上进行了详细的实验,包括50种沙拉,GTEA,早餐和桌面组件,表明我们的方法优于多层感知器基线,同时在时间活动细分中与时间段的时间段相比,在与时间段的时间段相当或更好地表现出色或更好。

We introduce a novel approach for temporal activity segmentation with timestamp supervision. Our main contribution is a graph convolutional network, which is learned in an end-to-end manner to exploit both frame features and connections between neighboring frames to generate dense framewise labels from sparse timestamp labels. The generated dense framewise labels can then be used to train the segmentation model. In addition, we propose a framework for alternating learning of both the segmentation model and the graph convolutional model, which first initializes and then iteratively refines the learned models. Detailed experiments on four public datasets, including 50 Salads, GTEA, Breakfast, and Desktop Assembly, show that our method is superior to the multi-layer perceptron baseline, while performing on par with or better than the state of the art in temporal activity segmentation with timestamp supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源