论文标题
最小重量欧几里得$(1+ \ varepsilon)$ - 跨度
Minimum Weight Euclidean $(1+\varepsilon)$-Spanners
论文作者
论文摘要
Given a set $S$ of $n$ points in the plane and a parameter $\varepsilon>0$, a Euclidean $(1+\varepsilon)$-spanner is a geometric graph $G=(S,E)$ that contains, for all $p,q\in S$, a $pq$-path of weight at most $(1+\varepsilon)\|pq\|$.我们表明,欧几里得$(1+ \ varepsilon)$ spanner的最小重量在单位方形$ [0,1]^2 $ is $ o(\ varepsilon^{ - 3/3/2} \,\ sqrt {n})$中,这是最好的。上界基于平面中的新跨度算法。它在基线$ o(\ varepsilon^{ - 2} \ sqrt {n})$上进行了改进,该$是通过结合欧几里得最低跨度树(MST)的重量而获得的,以$ [0,1]^2 $的限制,并以$ [0,1]^2 $的限制,以及euclidean $ $(1+var)的光线(1+var)。扳手的重量达到MST的重量。我们的结果概括为每个常数尺寸$ d $ d \ in \ mathbb {n} $的欧几里得$ d $ - 空间:欧几里得$(1+ \ varepsilon)$ spanner的最小重量$ o_d(\ varepsilon^{(1-d^2)/d} n^{(d-1)/d})$,这是最好的。 对于飞机上整数晶格的$ n \ times n $部分,我们表明欧几里得$(1+ \ varepsilon)$的最小重量在$ω(\ varepsilon^{ - 3/4} \ cdot n^2)$之间$ o(\ varepsilon^{ - 1} \ log(\ varepsilon^{ - 1})\ cdot n^2)$。这些边界变为$ω(\ varepsilon^{ - 3/4} \ cdot \ sqrt {n})$和$ o(\ varepsilon^{ - 1} \ log(\ varepsilon^{ - 1})特别是,这表明整数网格为\ emph {not}最小重量欧几里得$(1+ \ varepsilon)$ - 跨度的极端配置。
Given a set $S$ of $n$ points in the plane and a parameter $\varepsilon>0$, a Euclidean $(1+\varepsilon)$-spanner is a geometric graph $G=(S,E)$ that contains, for all $p,q\in S$, a $pq$-path of weight at most $(1+\varepsilon)\|pq\|$. We show that the minimum weight of a Euclidean $(1+\varepsilon)$-spanner for $n$ points in the unit square $[0,1]^2$ is $O(\varepsilon^{-3/2}\,\sqrt{n})$, and this bound is the best possible. The upper bound is based on a new spanner algorithm in the plane. It improves upon the baseline $O(\varepsilon^{-2}\sqrt{n})$, obtained by combining a tight bound for the weight of a Euclidean minimum spanning tree (MST) on $n$ points in $[0,1]^2$, and a tight bound for the lightness of Euclidean $(1+\varepsilon)$-spanners, which is the ratio of the spanner weight to the weight of the MST. Our result generalizes to Euclidean $d$-space for every constant dimension $d\in \mathbb{N}$: The minimum weight of a Euclidean $(1+\varepsilon)$-spanner for $n$ points in the unit cube $[0,1]^d$ is $O_d(\varepsilon^{(1-d^2)/d}n^{(d-1)/d})$, and this bound is the best possible. For the $n\times n$ section of the integer lattice in the plane, we show that the minimum weight of a Euclidean $(1+\varepsilon)$-spanner is between $Ω(\varepsilon^{-3/4}\cdot n^2)$ and $O(\varepsilon^{-1}\log(\varepsilon^{-1})\cdot n^2)$. These bounds become $Ω(\varepsilon^{-3/4}\cdot \sqrt{n})$ and $O(\varepsilon^{-1}\log(\varepsilon^{-1})\cdot \sqrt{n})$ when scaled to a grid of $n$ points in the unit square. In particular, this shows that the integer grid is \emph{not} an extremal configuration for minimum weight Euclidean $(1+\varepsilon)$-spanners.